
Arrays: The How and the Why of it All

Jane Stroupe

When you need to join data sets, do you even ask yourself “Why don’t I just use an array?” Perhaps

because arrays are a mystery or perhaps because you have never looked into how efficient arrays can

be, you have not put them into your lookup toolbox. This presentation addresses both problems, How to

utilize an array and why you should try it. In addition, you will discover how to use a multidimensional

array to solve a tricky data combination problem.

Using One Dimensional Arrays

Here’s the problem. You have a SAS data set that looks like this:

ficticious_watch_orders

Date ID Price

01NOV2012 10003 1150

01NOV2012 12022 3150

01NOV2012 10004 1565

02NOV2012 11011 1655

02NOV2012 11012 2325

03NOV2012 12021 2590

03NOV2012 12022 3150

03NOV2012 12023 4300

03NOV2012 12024 3250

.

.

.

.

.

.

.

.

.

In this data set, the variable ID represents a character variable where the first two digits indicate the

manufacturer of watches and the last two digits represents the style number. You need to combine the

data with the following two SAS data sets. In these two SAS data sets, the variable ID is numeric.

ficticious_brands

ID Name

10 Tagline

11 Roladex

12 Brett

ficticious_styles

ID Name

1 Man About Town

2 Big Gold Face

3 Moons Abound

4 Aqua Proof

11 Prince Someone

12 Princess

13 Not Your Dads Watch

21 One Time Zone

22 Two Time Zones

23 Three Time Zones

24 Four Time Zones

25 Five Time Zones

There are several ways that you could proceed, but since the ID variable in the ficticious_watch_orders

SAS data set is character and contains both the manufacturer id and the style id, you are going to have to

process ficticious_watch_orders to split the ID variable. You could have combined the

ficticious_brands SAS data and the ficticious_styles SAS data to create a variable which represents

the combination of brand ID and style ID. Regardless of how you decide to create the appropriate ID, you

still will have to sort the ficticious_watch_orders SAS data in order to merge the three data sets

together.

So let’s try to do this all in one DATA step and avoid a sort.

Example 1

First, a simple example will demonstrate how an array could be used to combine the ficticious_brands

SAS data with the ficticious_watch_orders SAS data.

data watch_sales;

 set ficticious_watch_orders;

 array man{10:12} $20 _temporary_

 ('Tagline','Roladex','Brett'); 

 M_ID=input(substr(ID,1,2),2.); 

 Manufacturer=man{M_ID};

run;

 Create a temporary array that stores the character constants ‘Tagline’, ‘Roladex’, and ‘Brett’ in a
length of 20. The array name is man and the index values range from 10 to 12.

 Use the SUBSTR function to extract the first two characters of the ID variable and the INPUT
function to convert the value to numeric. Array indexes must be numeric.

 The variable Manufacturer is found by looking for the element of the array man that corresponds to

the variable M_ID.

This example required that you type the values for the brand into the array.

Since you have the data in a SAS data set already, you can use IF/THEN logic and DO loops to load the

array with the values of the brand.

Example 2

data watch_sales;

 set ficticious_watch_orders;

 array man{10:12} $20 _temporary_; 

 if _N_=1 then do i=1 to NumObs; 

 set ficticious_brands(rename=(ID=B_ID)) nobs=NumObs; 

 man{B_ID}=Name; 

 end;

 M_ID=input(substr(ID,1,2),2.);

 Manufacturer=man{M_ID};

run;

 Create a temporary array that stores the character constants in a length of 20. The array name is
MAN and the index values range from 10 to 12. But no initial values are specified.

 The first time through the DATA step the DO loop is going to read all of the data from the

ficticious_brands SAS data set. The NumObs variable is set during compile time when the

NOBS= option on the SET statement names the variable. It is important to specify “if _n_=1” to

execute the DO loop once. Executing the DO loop a second time would stop the DATA step

because the SET statement would encounter the end of the SAS data set ficticious_brands,

resulting in one observation in the watch_sales SAS data set.

 In addition to creating the value of the variable NumObs during compile time, the RENAME= option

changes the name of the ID variable in the ficticious_brands SAS data set so it is not confused

with the ID variable in the ficticious_watch_orders SAS data set.

 Load each element in the man array with the value of Name.

Now continue the program to include the style information from the ficticious_styles SAS data set.

Example 3
data watch_sales;

 set ficticious_watch_orders;

 array man{10:12} $20 _temporary_;

 array style{25} $35 _temporary_; 

 if _N_=1 then do i=1 to NumObs;

 set ficticious_brands(rename=(ID=B_ID)) nobs=NumObs;

 man{B_ID}=Name;

 end;

 if _N_=1 then do i=1 to Num;

 set ficticious_styles(rename=(ID=S_ID)) nobs=Num; 

 style{S_ID}=Name;

 end;

 M_ID=input(substr(ID,1,2),2.);

 St_ID=input(substr(ID,length(ID)-1),2.);

 Manufacturer=man{M_ID};

 Style_Name=style{St_ID};

run;

 Just like the previous ARRAY statement, this ARRAY statement creates an array named style to hold

the constant names of the styles. Even though there are not 25 styles in the SAS data set

ficticious_styles, the array refers to 25 values. The index variable for an array must be

consecutive integers.

 Reads from the SAS data set ficticious_styles and names the NOBS= variable NUM

(note, it is different from the previous NOBS= variable.)

After that, the program is almost identical to the previous one.

Example 4
The SAS data set sales contains the sales for five styles of watches:

Sales

Date Style1 Style2 Style3 Style4 Style5

31JAN2012 129800 149800 171336 152024 1042

29FEB2012 282400 31400 372768 354912 4089

31MAR2012 68700 75570 90840 86156 9387

30APR2012 127200 13200 167900 151136 1333

31MAY2012 544000 584000 718800 62720 7754

30JUN2012 96000 105300 127160 117044 1728

31JUL2012 37000 38700 45840 41226 4943

31AUG2012 43980 43780 58536 52248 6267

30SEP2012 77600 85600 102430 92178 1166

31OCT2012 151400 166400 199980 179972 2928

30NOV2012 39000 42000 51480 46330 5554

31DEC2012 90000 99400 11980 10739 8742

The SAS data set target contains the target figures, in millions of dollars, for each month in the years
2009 to 2012.

Target

Year M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

2009 2 3 2 4 3 2 1 1 1 2 2 1

2010 3 5 3 6 5 4 3 3 3 3 4 3

2011 3 6 4 7 2 5 2 4 4 4 5 4

2012 5 5 3 6 4 6 4 2 5 6 6 5

To calculate the difference between the total sales amount for each date and the target for that month in
2012, you use PROC TRANSPOSE, and several DATA steps.

proc transpose data=target(where=(year=2012))

 out=target_T(rename=(col1=Target)) name=Mon;

run;

data target_T_mon;

 set target_T;

 where Target ne 2012;

 Month=input(substr(Mon,2),2.);

run;

data sales_sum(sortedby=Month);

 set sales;

 Month=month(Date);

 Total=sum(of Style:);

run;

data compare_;

 keep Date Style1-Style5 Total Target Difference;

 merge sales_sum target_T_mon;

 by Month;

 Difference=Total-(Target*1000000);

run;
.

Instead, you could have combined the two data sets in one DATA step, using an array.

data compare;

 keep Date Style1-Style5 Total Target Difference;

 array mon{*} Month1-Month12;

 if _N_=1 then set target

 (where=(Year=2012));

 set sales;

 Total=sum(of Style:);

 Month=month(Date);

 Target=mon{Month}*1000000;

 Difference=Total-Target;

run;

Using a Multidimensional Array to combine data

Suppose you have a data set that contains high and low temperatures, along with the wind speed:

temps

Date High Low Wind

29AUG2012 8 0 14

30AUG2012 7 -2 22

31AUG2012 9 -1 20

01SEP2012 8 0 23

02SEP2012 9 1 19

03SEP2012 10 2 14

04SEP2012 12 3 16

05SEP2012 10 2 23

06SEP2012 12 0 12

In addition, you have a table that provides the temperatures based on the wind chill factors;

wchill

WSpeed Neg10 Neg5 Tmp0 Tmp5 Tmp10 Tmp15 Tmp20 Tmp25 Tmp30

5 -22 -16 -11 -5 1 7 13 19 25

10 -28 -22 -16 -10 -4 3 9 15 21

15 -32 -26 -19 -13 -7 0 6 13 19

20 -35 -29 -22 -15 -9 -2 4 11 17

25 -37 -31 -24 -17 -11 -4 3 9 16

30 -39 -33 -26 -19 -12 -5 1 8 15

35 -41 -34 -27 -21 -14 -7 0 7 14

40 -43 -36 -29 -22 -15 -8 -1 6 13

Note that the wind speed is rounded to the nearest five, as is the temperature that ranges from -10 to 30.

To combine these two data sets, we will load the wchill data into a two dimensional array and be able to
access the appropriate row and column for the high temperature and low temperature based on the wind
speed based on the data in the temps SAS data set.

Here is the program:

data wndchll(keep=Date Wind High Low HighChill LowChill);

 array WC{8,9} _Temporary_; 

 array farenheit{*} High Low HighChill LowChill; 

 if _n_=1 then do I=1 to 8; 
 set wchill;

 array Tmp{9} Neg10 -- Tmp30;

 do J=1 to 9; 
 WC{I,J}= Tmp{J};

 end;

 end;

 set temps;

 Row=round(Wind,5)/5;
 Column1=(round(High,5)/5)+3;

 Column2=(round(Low,5)/5)+3;

 HighChill=round(WC{Row,Column1});
 LowChill=round(WC{Row,Column2});

 do i=1 to dim(Farenheit); 
 Farenheit{i}=9/5*Farenheit{i}+32;

 end;

run;

 Creates a temporary array named W that refers to 8 rows and 9 columns. The rows and columns

correspond to the observations and variables in the wchill SAS data set.

 Creates an array to refer to the High and Low temperatures in the temps SAS data set and create

the new variables HighChill and LowChill temperatures.

 The first time through the DATA step, the DO loop causes the SET statement to execute 8 times,
thus reading through the wchill SAS data set. The Tmp array refers to the nine temperature
variables in the wchill SAS data set.

 The DO loop is going to fill the array W with all of the values in the data set wchill.

 The three assignment statements round off the temperatures and wind speed that are being read

from the temp SAS data set.

 Using the W array, retrieve the value that is associated with the low temperature and wind speed,

high temperature and wind speed.

 The final DO loop is going to convert the variables containing the temperatures from Celcius to

Fahrenheit.

Conclusion

There are many SAS techniques that can be used to combine data horizontally. If you have an

appropriate index variable (remember, it must be a consecutive integer), an array could be the most

efficient technique. And if you do not have a consecutive integer, try a DATA step hash object.

Contact Information

Jane Stroupe
SAS Contract Instructor
jgsstroupe@gmail.com

